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Elasticity in strongly interacting soft solids: A polyelectrolyte network

J. Wilder* and T. A. Vilgis†

Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, 55021 Mainz, Germany
~Received 7 October 1997!

This paper discusses the elastic behavior of a very long cross-linked polyelectrolyte chain~Debye-Hückel
chain!, which is weakly charged. Therefore the response of the cross-linked chain~network! on an external
constant forcef acting on the ends of the chain is considered. A self-consistent variational computation of an
effective field theory is employed. It is shown that the modulus of the polyelectrolyte network has two parts:
the first term represents the usual entropy elasticity of connected flexible chains and the second term takes into
account the electrostatic interaction of the monomers. It is proportional to the squared cross-link density and
the Debye-screening parameter.@S1063-651X~98!05506-8#

PACS number~s!: 36.20.2r, 05.20.2y, 61.41.1e
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I. INTRODUCTION

Polyelectrolytes are of fundamental importance in a w
range of academic sciences to applications. It ranges f
life sciences such as biology or biochemistry to indust
and practical applications in daily life products. A typic
example for the latter are superabsorber materials. Th
consist of highly cross-linked polyelectrolyte networks th
are strongly interacting elastic materials.

The theoretical interest in polyelectrolytes reaches bac
the early days of polymer science~see, e.g.,@1#!. Neverthe-
less they belong to the least understood systems in ma
molecular science@2#, since there are difficulties in applyin
renormalization group theories and scaling ideas in wh
long ranged~i.e., Coulomb! forces are present. Only ver
recently novel types of field theoretic attempts broug
progress@3#.

In the present paper we aim for a theory of the elastic
of polyelectrolyte networks. This is a nontrivial task, sin
most of the classical and modern theories neglect the e
of interactions on elasticity. In neutral networks the intera
tions are mainly given by excluded volume forces. In the d
network state these can be safely neglected for most ca
since in dense systems such as polymer melts excluded
ume interactions are largely@4,5#. However, if solvent is
added to the network and the network starts to swell, pr
lems arise. Early theories by Flory@6# suggested that the
elastic part of the free energy and the solvent part, i.e
Flory-Huggins–type term, can be added. Later on this c
cept was named the Flory-Rehner hypothesis@7# in the con-
text of swelling experiments. The network state would
determined by the minimum of the total free energy. Inde
such approximations are used in a wide range of applica
for rubberlike materials in the swollen state@8#. The com-
parison with experiments seems to be reasonable, i.e., i
cases the modulus is found to be proportional to the cro
link density, although from a theoretical point of view th
simple addition of the two parts of the free energy must
wrong@9#. It must be wrong, because a complete formulat
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of the partition function suggests immediately the appe
ance of cross terms. We analyze the Flory-Rehner hypoth
in the context of thermodynamics and its application@10#,
where an approximation that neglects fluctuations co
pletely is shown. In the present paper this is not the cen
point and we restrict ourselves to compute the elastic
sponse of a polyelectrolyte network including fluctuations
a variational level.

In neutral networks, however, the approximations seem
be not too bad, because the interactions are relatively s
ranged and weak. Moreover the equilibrium swelling deg
is then given by thec* network. When polyelectrolyte net
works are considered, we cannot expect that the Flory
proximation holds. The interactions are long ranged and v
strong compared to excluded volume interactions. Her
strong interplay of elastic degrees of freedom and inter
tions must be expected. The reason is very simple: the str
interactions change the physical nature and the conforma
of a charged polymer chain strongly compared to the neu
chain. The state at rest, i.e., a network strand without ap
cation of an external force, does not contain as many deg
of conformation as the equivalent neutral chain. Its conf
mation ranges, depending on ionization and salt conten
the solution, from excluded volume behavior to a rodli
behavior. Thus a more detailed theory is needed to comp
the elastic modulus of charged and highly interacting ge
Nevertheless the Flory approximation has been emplo
also for strongly interacting polyelectrolyte gels in bad s
vent to study the phase diagram@11#. Moreover, recent sug
gestions@12# have claimed an unchanged modulus for po
electrolyte networks. We will see later, however, the reas
for these statements.

Most of the classical network theories rely on ‘‘sing
chain models.’’ This is to say that the elasticity of the ne
work can be roughly computed by studying first the elastic
of a single chain. The elastic properties of the entire netw
are then supposed to be given by the partition function of
single chain raised to the power of the number of chai
Such computations hold strongly only for weakly interacti
systems. Again in neutral networks the interactions, i.e.,
excluded volume forces, are weak since they are scree
but in polyelectrolyte networks these types of assumpti
do not seem to be reasonable. Another drawback of th
6865 © 1998 The American Physical Society
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6866 57J. WILDER AND T. A. VILGIS
single chain type theories is that they ignore the effect
quenched disorder stemming from the cross links co
pletely. Although some progress for polyelectrolyte netwo
has been achieved by single chain theories@13#, which are
based on blob pictures@15#, it is necessary to study a ne
work model including the quenched disorder produced
the cross links~see, e.g.,@14# for a review!. It has to be kept
in mind that so far only the limits for large and small scree
ing parameters are studied. Large screening parameter~in
terms of a Debye-Hu¨ckel approximation! correspond to a
large salt concentration. This regime is relatively unintere
ing, since it corresponds to the good solvent regime.
small screening the chains are significantly stretched, and
chains are in the polyelectrolyte regime@15#. For networks,
however, these two limits alone are not sufficient. In stron
cross-linked networks the chain pieces between two c
links can easily be of the same order as the Debye-Hu¨ckel
screening length. Therefore a more elaborated analysis m
be carried out.

In a previous paper@16# we had investigated the couplin
between elasticity and interactions in a single chain. T
model calculation was carried out to show that a strong c
pling between elastic~conformational! degrees of freedom
and electrostatic interactions exists. Of course, unlike a
neutral network systems it is not sufficient to consider
elasticity of a single chain and generalize the results t
corresponding network of a large number of such chains
the case of polyelectrolyte networks the chains are stron
interacting with each other. Therefore any assumption
weakly interacting chains fails. Nevertheless the compu
tional method used in@16# has shown to be useful. The re
sults presented there ended up in a two regime blob pict
For small forces the de Gennes@15# electrostatic blob mode
was recovered. In this regime the chain was relatively eas
deform. For larger forces a change in the elasticity was p
dicted. Then the chain entered in a Pincus regime of
prestretched chain. The results have been confirmed by s
lation and by a self-consistent variational principle. Inde
the method developed in@16# is appropriate to the interme
diate regime between strong and weak screening.

In this paper we extend our considerations concerning
single polyelectrolyte chain@16# to a polyelectrolyte net-
work. The simplest version of a polymer network was intr
duced by Deam and Edwards@17#, which consists of a very
~macroscopically! long cross-linked chain. In our case the
is no difference between a network made of many chain
of one long chain, since we assume to be deep in the s
phase, i.e., well beyond the vulcanization threshold. As
the case of a single polyelectrolyte chain@16# we are inter-
ested in the force-size relationship of the network in a go
solvent. In contrast to the classical theories the effects
interactions are now taken into account explicitly. For si
plicity we assume a Debye-Hu¨ckel potential for the electro
static interaction. It is of the formV(r )}1/rexp(2r/l). This
might not be the best choice to reproduce recent simula
data@18#, which had shown that the Debye-Hu¨ckel potential
is not always a good approximation, but the advantage of
potential is that its range is controlled by a single parame
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i.e., the Debye screening lengthl. Indeed little is known
about the interplay of elasticity~conformation! and strength
of the interactions in the theory of network elasticity. Th
aim of the present paper is to learn something about
interplay. Therefore we apply an external force on the e
of the chain. To do so, we employ a variational principle a
determine the effective propagator of the chain, which allo
statements about the interplay of conformationand interac-
tions on the elasticity. In the following we will neglect th
effect of entanglements completely, since we are mainly
terested in the contributions of the interactions to elastic
The results given below will then mainly apply for une
tangled networks. To produce simple estimates of entan
ment contributions tubelike models can be employed@14#.
We expect, however, that the effects of entanglements
not be very different from those in neutral networks, as lo
as their number is given. The main problem would then be
compute the mean number of entanglements by the pres
of the electrostatic interactions.

The starting point for the computation of the elastic fr
energy is the Green function of the cross-linked chain wi
out an external force, similar to our calculations of the sin
polyelectrolyte chain@16#. The force is treated through th
analytic continuation of the Fourier-transformed Gree
function to the complex plane. After having introduced
field theory the problem is mapped on a Gaussian fi
theory with a propagator that formally in the Fourier spa
can be written down exactly by making use of the prop
self-energy. According to the well-known Feynman var
tional inequality the sum of the Gaussian free energy and
mean value of the interacting potential has to be minimiz
with respect to the proper self-energy, which is our var
tional parameter. This leads to a nonlinear integral equa
for the proper self-energy, which can be solved appro
mately.

The paper is organized as follows. In the next section
present the underlying model and introduce the cross lin
In Sec. III we formulate a field theory and calculate t
variational equation for the proper self-energy. In Sec.
this variational equation is solved approximately. These s
tions will be written out in more detail, since this is—to ou
knowledge—the first time that a strongly interacting netwo
is investigated by this technique. Thus the mathematic
interested reader might find the main steps of the comp
tion. The results are presented in Sec. V. The paper ends
the discussion of the results.

II. MODEL AND THEORETICAL BACKGROUND

The starting point for the field theoretic computation is
network formed out of a macroscopically long chain by t
instantaneous introduction of a sufficiently large number
cross links in the liquid phase~see, for example,@17,19#!.
We restrict ourselves to a network that consists of flexib
weakly charged strands. Consequently the Edwards mod
an appropriate tool to describe the network@20#. Therefore
let us choose as a Hamiltonian for the charged chain in aq
ous solution
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bHE@r ;f#5
3

2l 2E0

Ntot
dsS dr

dsD
2

1bE
0

Ntot
dsf•

dr

ds

1
bz2

2 E
0

Ntot
dsE

0

Ntot
ds8

exp$2kur ~s!2r ~s8!u%

ur ~s!2r ~s8!u
,

~1!

where r (s) represents the chain conformation in three
mensions as a function of the contour variables, b
5e2/4pe0e rkBT is the Bjerrum length,b is (kBT)21, where
kB is the Boltzmann constant andT denotes the absolut
temperature.l is the Kuhn segment length,z is the monomer
charge in units ofe, e0 is the dielectric constant, ande r the
relative dielectric constant.Ntot stands for the bare number o
monomers on the chain,f is the external force andk21 de-
notes the Debye-Hu¨ckel screening lengthl. For the intro-
duction of cross links we choose the standard way sugge
by Deam and Edwards@17#. We assume for mathematica
convenience four functional cross links that join two ar
trary segmentsr (si) andr (sj ) along the chain. Of course, th
value for the free energy then depends on the specific ch
of the pairs of monomers, but on a macroscopic scale o
the statistical average on any cross-link configuration is
importance. Nevertheless this requires non-Gibbsian sta
cal mechanics in the sense that the cross link positions
resent quenched degrees of freedom.

The basic problem for the determination of the free e
ergy of the network is the presence of quenched disor
which is contained in the permanent cross links. The form
tion of a cross link, i.e., the linkage between two arbitra
segmentsr (si) andr (sj ) represents quenched disorder, sin
the segments are joined together for all times and for
thermodynamic situations. Of course, the experimental
evant free energyF depends on the cross-link configuratio
and cross-link realizationS. The actual cross-link configura
tion S is not known in detail, thus the technical difficulty
to average the free energyF(S… over all possible cross-link
realizations. To do so, it is generally assumed that the co
sponding distributionP(S) can be determined.

Let us present the outline of the idea in more detail.
calculate the free energyF of the network, we have to tak
the statistical average over all cross-link configurationsS.
This represents the fact thatF is a self-averaging quantity:

F~Ntot ,Nc!52kBTE dSP~S!ln Z~S!. ~2!

Z(S) is the constrained partition function for a network wi
the cross-link configurationS, Nc is the number of cross
links, andP(S) is the cross-link distribution function. Sinc
we assume that the cross links are instantaneously introd
in the liquid phase,P(S) is yielded by the constrained pa
tition function of the liquid phase, which is defined in term
of a path integral as

Z~0!~S!5E Dr ~s!exp~2bHE!)
~ i , j !

d@r ~si !2r ~sj !#, ~3!
-
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where (i , j ) denotes that thei th and thej th monomer are
close to each other in the liquid phase, which means that t
can form one of theNc cross links. Consequently the cros
link distribution functionP(S) is simply

P~S!5
Z~0!~S!

E dS8Z~0!~S8!

. ~4!

In the following it appears to be reasonable to assume
the so chosen distribution function does not depend on
specific deformation of the network. Note thatZ(S… differs
generally fromZ(0)(S). Since we are interested in deform
tions of the network,Z(S… is the partition function of the
deformed network.

To calculate the free energyF @Eq. ~2!# explicitly it
is convenient to make use of the so-called replica trick@17#.
This, so far, purely mathematical trick relies on th
identity @21#

lnz5
]zm

]m U
m50

.

Define

Fm~Ntot ,Nc!52kBT lnE dSZ~0!~S!Zm~S!, ~5!

wherem is the replica index. Equation~5! shows the origin
of the technical term ‘‘replica method.’’ By the use of th
mathematical trickm copies of the system are produced. T
free energyF, which is averaged over the disorder of th
crosslinks, reads@17#

F~Ntot ,Nc!5
]Fm~Ntot ,Nc!

]m U
m50

. ~6!

As in the previous paper, the free energyF is calculated by
making use of its relation to the corresponding distributi
functions and Green functions of the corresponding propa
tor ~see@16# for the technical details!.

III. FIELD-THEORETICAL FORMULATION

In the following we will give an outline of the computa
tion of the network elasticity, i.e., our main aim is to com
pute the low deformation modulus of the polyelectrolyte n
work. Therefore we start from a concentrated polyelectrol
solution @22#, consisting of one macroscopic chain and t
appropriate number of counterions to satisfy the condition
electroneutrality. Then the cross links are introduced inst
taneously by the process described above. The follow
chapter will be very formal, but we think that it is importan
to do so, since it turned out that none of the methods e
ployed for neutral networks can be used in the present c
text. The main reason for this is that here we do not have
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option of formulating the problem in terms of one leng
scale, i.e., the mesh size, but must take into account
range of the interaction.

For the relevant quantities to compute it is necessary
consider the correlation functionG( r̂ ,Ntot ,Nc ,f,S) of a
he

to

cross-linked polyelectrolyte chain in replica space, wherr̂
5(r0 ,r1 , . . . ,rm) is the replicated 3(m11)-dimensional
end-to-end vector of the chain andS the specific cross-link
configuration:
cas

t way,

case of

space to

had
G~ r̂ ,Ntot ,Nc ,f,S!5E
r0~0!50

r0~Ntot!5r0
Dr0~s!E

r1~0!50

r1~Ntot!5r1
Dr1~s!•••E

rm~0!50

rm~Ntot!5rm
Drm~s!exp~2bĤE@ r̂ ,f# !)

p50

m

)
~ i , j !

d@r p~si !

2r p~sj !# ~7!

with p the replica index. The forcef is only acting on the ends of the final states~replica index 1 tom) of the chain. Thus the
replicated HamiltonianĤE@ r̂ ,f# reads

bĤE@ r̂ ,f#5
3

2l 2(p50

m E
0

Ntot
dsS dr p

ds D 2

1b (
p51

m E
0

Ntot
dsf

dr p

ds
1

bz2

2 (
p50

m E
0

Ntot
dsE

0

Ntot
ds8

exp$2kur p~s!2r p~s8!u%

ur p~s!2r p~s8!u
. ~8!

The important observation is that the replicated HamiltonianĤE separates in the different replicas. The coupling of the repli
comes into play when the average over the distributionP(S) is performed. If we use the standard distribution@17# the Green
function must be computed upon the effective Hamiltonian

Ĥ5ĤE2zcE
0

Ntot
dsE

0

Ntot
ds8)

p50

m

d„r p~s!2r p~s8!…. ~9!

The latter equation shows the difficulty of the problem, i.e., all replicas are coupled. Below we choose a differen
suggested by Edwards@17# and Panyukov@19#. We must employ field theoretic methods~as also done in@19#!, but the
treatment of the field theory is very different, since the symmetry of the problem is not of the same nature as in the
neutral networks.

It is easy to show that the Greens function in the Fourier-transformed replica space depending on a constant forcef can be
calculated by a zero-force Green function. The force can be reintroduced by the analytic continuation of the Fourier
the complex plane, which means in detail:

G~ k̂,Ntot ,Nc ,f,S!5E dr̂ exp$2 i ~ k̂2 ib f̂! r̂%G~ r̂ ,Ntot ,Nc ,f50,S!5G~k~0!,k~1!2 ibf, . . . ,k~m!2 ibf,Ntot ,Nc ,f50,S!. ~10!

Here f̂ is the 3(m11)-dimensional force vector (0,f, . . . ,f). This is exactly the same mathematical procedure as we
already used in the previous calculation concerning the single polyelectrolyte chain~see@16#!. As a consequence of Eq.~10!
in the following we neglect the force term in the Hamiltonian and first calculate a zero force correlation function.

The grand canonical correlation functionG̃( k̂,m0 ,zc ,f) in replicated Fourier space, wherek̂ is the wave vector in the
3(m11)-dimensional Fourier-transformed replica space,m0 is the chemical potential of the monomers andzc is the fugacity
of the cross links, can be calculated by the introduction of de Gennes’ zero-component field theory~see, for example,@19#!

G̃~ k̂,m0 ,zc ,f!5 lim
n→0

E DcW c1~ k̂!c1~2 k̂!exp$2bH@cW #%. ~11!

H@cW # in Eq. ~11! is the zero force field theoretical Hamiltonian expressed by then-component fieldcW , which in Fourier space
reads@16,19#

H@cW ~ q̂!#5E
q̂
Fm2cW ~ q̂!cW ~2q̂!1

l 2

2
q̂2cW ~ q̂!cW ~2q̂!G2

zc

8 Eq̂1 ,q̂2 ,q̂3 ,q̂4

cW ~ q̂1!cW ~ q̂2!cW ~ q̂3!cW ~ q̂4!d~ q̂11q̂21q̂31q̂4!

1 (
k50

m F E
q̂1 ,q̂2

cW ~ q̂1!cW ~ q̂2!)
lÞk

d~q1
~ l !1q2

~ l !!GF E
q̂3 ,q̂4

cW ~ q̂3!cW ~ q̂4!)
lÞk

d~q3
~ l !1q4

~ l !!GV~k!~q3
~k!1q4

~k!!d~q1
~k!1q2

~k!

1q3
~k!1q4

~k!!, ~12!
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whereV(k)(q) is the Fourier transform of the Debye-Hu¨ckel
potential in thekth replica,cW is ann-component vector field
and *q is an abbreviation for the integral notatio
*ddq/(2p)d with d the dimension of the vectorq. In Fourier
spaceG̃( k̂,m0 ,zc) can be written exactly as

G̃~ k̂,m0 ,zc!5S m01
l 2

6
k̂21S~ k̂,zc! D 21

, ~13!

where S( k̂,zc) denotes the proper self-energy in repli
space.

Since we do not know the exact proper self-ene
S( k̂,zc), we have to calculate it approximately. Therefo
we now consider an approximate correlation functi
G̃( k̂,m0 ,zc) with an approximate proper self-energ
M ( k̂,zc):

G̃~ k̂,m0 ,zc!5S m01
l 2

6
k̂21M ~ k̂,zc! D 21

. ~14!

To proceed with a variational principle we define the Gau
ian HamiltonianH by

bH@cW #5
1

2Ek̂
cW ~2 k̂!G̃21~ k̂,m0 ,zc!cW ~ k̂!. ~15!

The correlation functionG̃( k̂,m0 ,zc) can be calculated
within the zero-component field theory of de Gennes~see,
for example,@19#!:
y

-

G̃~ k̂,m0 ,zc!5 lim
n→0

E DcW c1~ k̂!c1~2 k̂!exp$2bH@cW #%.

~16!

In this notation the well-known Feynman inequality, whic
can be taken for the calculation of the approximate pro
self-energyM ( k̂,zc), is given by

F<F1^H2H&H , ~17!

where

^•••&H5 lim
n→0

E DcW •••exp$2bH%

E DcW exp$2bH%

~18!

is the mean value andF the free energy with respect toH.
The right-hand side of the inequality~18! has to be mini-
mized with respect toM . F and^H2H&H can be written in
terms of the correlation functionG̃( k̂,m0 ,zc):

bF52
n

2
VE

q̂
ln@ G̃~ q̂,m,zc!#, ~19!

whereV is the volume of the replica space. As can be sho
easily the second term of the right-hand side of inequa
~17! is @21#
the
mini-
b^H2H&H52
n

2
VE

q̂
M ~ q̂,zc!G̃„q̂,m,zc)…1

pbz2n2~m11!V0
mV

2k2 S E
q̂
G̃~ q̂,m,zc! D 2

1pbz2n~m11!V

3E
q̂1 ,q̂2

G̃~ q̂1 ,m,zc!G̃~ q̂2 ,m,zc!

~q1
~0!1q2

~0!!21k2 )
l 51

m

d~q1
~ l !1q2

~ l !!2
zc

8
~n212n!VS E

q̂
G̃~ q̂,m,zc! D 2

, ~20!

with V0 the volume of a single replica segment andV the volume of the whole replica space. As we want to determine
approximate proper self-energyM ( k̂,zc), this function should be the variational parameter. Consequently the general
mization condition reads

d

dM ~ q̂,zc!
~F1^H2H&H!50, ~21!

whered/dM (q̂,zc) denotes the functional derivative with respect toM (q̂,zc). After inserting Eqs.~18! and~20! into Eq. ~21!
one obtains
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M ~ k̂,zc!5
2pbz2n~m11!V0

m

k2 E
q̂

1

m1~ l 2/6!q̂21M ~ q̂,zc!

14pbz2E
q~0!

1

~q~0!1k~0!!21k2

1

m1~ l 2/6!~q~0!,k~1•••m!!21M ~q~0!,k~1•••m!!

14pbz2mE
q~1!

1

~q~1!1k~1!!21k2

1

m1~ l 2/6!~k~0!,q~1!,k~2•••m!!21M ~k~0!,q~1!,k~2•••m!!

1
zc

2
~n12!E

q̂

1

m1~ l 2/6!q̂21M ~ q̂,zc!
, ~22!
ce

n

gle
gy
ace
where the shorthand notationk( i •••m)5(k( i ), . . . ,k(m)) is in-
troduced. This is a nonlinear integral equation forM (q̂,zc),
which in the following has to be solved approximately, sin
the exact solution is unknown.

IV. APPROXIMATE SOLUTION
FOR THE PROPER SELF-ENERGY

In analogy to the calculations on the single chain@16# we
restrict ourselves to small external forces applied on the e
 ds

of the cross-linked chain. Therefore we make the samean-
satz for the proper-self energy as in the case of the sin
chain@16#. The only difference is that the proper self-ener
in this paper is a function depending on the replica-sp
wave vectorq̂:

M ~ q̂!5a01a1q̂21O~ q̂4!. ~23!

To start with let M r(q̂) be M (q̂)2M (0). Then M r(q̂) is
given by
rivative

k it

re
grals of

and
us we
M r~ k̂!54pbz2~m11!F E
q~0!

1

~q~0!1k~0!!21k2

1

m r1~ l 2/6!~q~0!,k~1•••m!!21M r~q~0!,k~1•••m!!

2E
q~0!

1

~q~0!!21k2

1

m r1~ l 2/6!~q~0!!21M r~q~0!,0!
G , ~24!

wherem r5m1a0. Since we assume a replica symmetric solution for the proper self-energy, we consider the second de
of M r( k̂) with respect tok(0) at vanishing replica-space wave vectorsk̂, which yields a result fora1. The details of calculation
are exactly the same as for the single chain@16#:

a15
2bz2

3l 2pm rk
F11OS k l

Am r
D G . ~25!

This result is valid forbq̂/k,1 or in terms of the forceb f /k,1. For details see@16#. It is important to mention that the
coefficienta1 is independent of the fugacity of the cross linkszc . Consequently to study the characteristics of the networ
is necessary to calculate the constant term of the proper self-energya0. In the following we neglect terms of ordern, where
n is the number of components of the fieldcW , since we have to take the limitn→0:

M ~ k̂!54pbz2~m11!E
q~0!

1

~q~0!1k~0!!21k2

1

m1~ l 2/6!~q~0!,k~1•••m!!21M ~q~0!,k~1•••m!!
1zcE

q̂

1

m1~ l 2/6!q̂21M ~ q̂!
.

~26!

Note that the right-hand side of Eq.~26! diverges even in the limitm→0. Since we started with a discrete model, we a
not allowed to consider infinitesimally small length scales, which means that we have to introduce a cutoff in the inte
Eq. ~26!. An appropriate cutoff isk ~see@16#!. Consequently it is consistent to substitute theansatz~23! for M (q̂) in the
integrals of Eq.~26!, since it is valid foruq̂u,k @16#. As we intend to calculatea0, all k variables in the integrals of Eq.~26!
vanish, which means that only absolute values of theq variables occur. Therefore we introduce spherical coordinates
neglect terms of orderO(m2) in the second integral after having transformed to a dimensionless integration variable. Th
get the following self-consistent equation fora0:
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a05
2bz2~m11!

p E
0

k

dq
q2

q21k2

1

m1a01~ l 2/6!q21a1q2
1

2zc~m1a0!~3/2!m11/2

23~m11!p~3/2!~m11!G„3
2 ~m11!…~ l 2/6!1a1) ~3/2!~m11!

3E
0

kA~ l 2/61a1!/~m1a0!
dq̃

q̃2@113mln~ q̃!#

11q̃2
. ~27!

Note that the integration variableq̃ is dimensionless. The integrations in Eq.~27! can be performed and the result is

a05
12bz2~m11!A6~m1a0!

p~6m16a026k2a12k2l 2!Am l 216ma11a0l 216a0a1

arctanS k~ l 216a1!

A6~m1a0!~ l 216a1!
D 2

3bz2~m11!k

6m16a026k2a12k2l 2

1
2zc~m1a0!~3/2!m11/2

23~m11!p~3/2!~m11!G„ 3
2 ~m11!…~ l 2/61a1!~3/2!~m11!H kAl 2/61a1

m1a0
F123m13mlnS kAl 2/61a1

m1a0
D G

2arctanS kAl 2/61a1

m1a0
D 2

3mp

4
lnS 11

k2~ l 2/61a1!

m1a0
D1

3mi

2 FdilogS ikAl 2/61a1

m1a0
D 2dilogS ikAl 2/61a1

m1a0
D G J , ~28!

where dilog(x) is the dilogarithmic function, defined as

dilog~x!5E
1

x

dt
ln~ t !

12t
~29!

Starting from expression~28! we neglect terms of orderO(m2). As we consider weakly charged networks we only take i
account terms up to the order ofz2. Terms of higher order in the chargez are neglected. We are interested in the long-ran
limit of the Debye-Hu¨ckel potential. So the next step is to make a series expansion with respect to smallk including terms of
orderk3. Note that the sequence of the series expansions with respect to the monomer chargez and the inverse Debye-Hu¨ckel
screening lengthk is important. For physical reasons it does not make sense to consider first the long ranged limit
calculating the weakly charged case. The result of this analysis is

a05
bz2~m11!k

m1a0
S 2

p
2

1

2
2

k2l 2

12~m1a0!
1

2k2l 2

9p~m1a0! D1
k3zc

p2~m1a0!
S mg

4
1

mln~ lk/Ap!

2
2

2m

3
1

1

6D 1O~m2,z4,k4!

~30!

with g'0.577 2157 Euler’s constant. Neglecting terms of ordera0
2 in Eq. ~31! leads to a linear equation ina0 that can be

solved. The result fora0 is

a05
k

mS 2bz2~m11!

p
2

bz2~m11!

2
1

2k2l 2bz2~m11!

9mp
2

k2l 2bz2~m11!

12m D
2

k

mS 2k2zcm

3p2
2

k2zcgm

4p2
2

k2zcln~k l /Ap!m

2p2
2

k2zc

6p2 D . ~31!
n
on

n
ta

:

ks
q.
Since the expansion coefficientsa0 anda1 for the proper
self-energyM ( k̂) due to the calculation above are know
approximately it is possible to write down the Green functi
formally:

G̃~ k̂,m,zc!5
1

m1a01~ l 2/6!k̂21a1k̂2
. ~32!

V. RESULTS

From Eq. ~32! the grand canonical partition function i
replica space under the influence of an external cons
 nt

force f acting on the ends of the chain can be calculated

Jm~m,zc ,f!5G̃~k~0!,k~1!2 ibf, . . . ,k~m!2 ibf,m,zc!u k̂50

5
1

m1a02~ l 2/6!mb2f 22a1mb2f 2
. ~33!

Here we reintroduced the forcef according to Eq.~10!. The
monomer chemical potential and the fugacity of cross lin
that parametrize the grand canonical partition function in E
~33! should be expressed in terms of the parametersNtot and
Nc . According to Panyukov and Rabin@19# the expression
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Fm(Ntot ,Nc) can be calculated by the method of steep
descent in the thermodynamic limitNtot ,Nc→`:

Fm~Ntot ,Nc!/kBT52 lnJ~m,zc!2Ntotm1Nc ln zc .
~34!

Consequently the fugacityzc of cross links and the chemica
potentialm of monomers can be obtained by minimizing t
right-hand side of Eq.~34!:
,

ty

m

t
Ntot52

] lnJm50~m,zc!

]m
~35!

and

Nc5
] ln Jm50~m,zc!

] ln zc
~36!

in the limit of a vanishing replica indexm. It can be shown
from Eqs.~35! and ~36! that
N̄5
3zcm

2k3

8k3z2bl2p136kmbz2p13k3zcm218m3p229kmbz2p223k3bz2l 2p2
, ~37!
-

s

d
ing
s

whereN̄ is defined as the cross-link densityNc /Ntot of the
network. Neglecting the charge per monomerz the crosslink
density reads

N̄'
3zcm

2k3

3zcmk3218p2m3
. ~38!

Since N̄ is a positive numberzc has to be large enough
namely,

zc.
6p2m2

k3
. ~39!

At this point we make a series expansion of Eq.~38! with
respect to smallm neglecting terms of orderm2, which is
possible, becausem is connected with the cross-link densi
N̄, that is assumed to be small:

N̄5m1O~m2!. ~40!

To calculatezc we make the followingansatzaccording to
inequality ~39! with a positivey:

zc5
6p2m2

k3
1y, ~41!

Now we substitute thisansatzfor zc and the result for the
chemical potentialm into Eq.~37! and calculatey. Therefore
we again make a series expansion with respect to s
monomer chargesz neglecting terms of orderz4.

N̄5
2p2N̄2~9bp2N̄236bN̄p!z2

y2k5

1
2p2N̄2

yk3 S 3N̄1
3bz2l 2p228bz2l 2p

y D
all

1
3bz2N̄p2212bz2N̄p

yk2
1N̄

1
3bz2l 2p228bz2l 2p

3y
1O~z4!. ~42!

This equation can be solved with respect toy. Again neglect-
ing terms of orderz4 and only taking into account the lead
ing term with respect to a small inverse Debye-Hu¨ckel
screening lengthk the result is

y5
3p~42p!bz2

k2
1O~z4,k0!. ~43!

Now we can write down the result forzc, which reads

zc5
6p2N̄2

k3
1

3p~42p!bz2

k2
. ~44!

Moreover it can be shown@19# that the conformational free
energy of the network is given by

F~Ntot ,Nc ,f!52kBT
] lnJm~m,zc!

]m U
m50

. ~45!

If the free energyF is known the force-size relationship i
simply calculated by the derivative ofF with respect to the
external forcef :

^R&52
]F~Ntot ,Nc , f !

] f
. ~46!

After having inserted the results forzc and m in the force
size relationship, expanded for small chargesz neglecting
terms of orderz4 and higher, since only weakly charge
networks are stable, and considered only terms of lead
order with respect to smallk the force-size relationship read
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^R&5S bz2

3N̄2pk
1

l 2

6N̄
D b f 1O~z4,k!. ~47!

This is again the result for the small deformation regime. T
result describes a Hookian law for the force extension re
tion and defines the elastic modulus of the polyelectrol
network. Note further that this result is valid for small force
i.e., b f /k,1. Therefore the modulus for the small screeni
and the low deformation regime of the network reads

G5S bbz2

3N̄2pk
1

b l 2

6N̄
D 21

, ~48!

which is the central result of our paper. The modulus
pends on the density of the cross link and on the De
screening parameter. Thus both contributions enter in a
nificant way. Most striking is that part of the modulus ste
ming from the interactions, which depends on the cross-
densityN̄ squared.

VI. DISCUSSION

In the previous sections we analyzed the force size r
tionship of a polyelectrolyte network, which was made o
very long cross linked chain. The method presented, wh
was developed for a single chain@16#, is in replica space
applicable to polyelectrolyte networks. We considered
network in the long ranged limit of the Debye-Hu¨ckel poten-
tial.

An important result is that for small forces and weak
charged networks the response to an external forcef is pro-
portional tof. The modulusG depends onN̄2, whereN̄ is the
cross-link density, which is a surprising result in contrast
classical considerations on networks, where the modulu
proportional toN̄ @23#. To discuss the result for the modulu
in more detail let us discuss it in the form

G215bS l 2

6N̄
1

bz2

3N̄2pk
D . ~49!

The modulus consists of two terms. The first part,GN

}kBTN̄, of the modulus is the term corresponding to clas
cal rubber elasticity. It is proportional to the temperature a
to the cross-link density. This corresponds to the usual
tropy elasticity of connected flexible chains. The factor 1
appears only from the choice of the special representatio
the network, i.e., one macroscopic chain and has no spe
physical meaning. The second part, i.e.,GI
e
-

e
,

-
e
g-
-
k

a-

h

e

o
is

i-
d
n-

of
fic

}(kBTN̄2k)/(bz2), stems purely from the interactions. It
not entropy elastic, since the Bjerrum lengthb and the Debye
screening parameter depend on temperature. The ov
temperature dependence is given byGI}T3/2. Since both
parts have a really distinguished temperature depende
they can be separated experimentally in a clear way. Mo
over the strong difference in the cross-link dependence,GN

}N̄ andGI}N̄2, allows also a clear experimental separatio
It is interesting to note that the two different terms com

bine as two springs in series, one entropic one~the rubber
network! and another energetic one, coming from the int
actions. If the strength of the springs is very different, na
rally in such systems always the weaker dominates the m
elasticity.

It is important to realize that interactions and elastic
interplay in a clear way. Our results yield then the conclus
that the Flory assumption, i.e., adding the different parts
elastic and interaction parts, is no longer valid in these s
tems. These approximations are perhaps on a level of
random phase approximation, but clearly the field theoret
variational technique used in the present paper is bey
perturbative methods used so far in neutral@9,17# and poly-
electrolyte@12# networks. The Flory-Rehner assumption no
mally uses for the total free energy of the networkF
5Felastic1F int , i.e., the addition of the elastic and the inte
action part of the free energy@6,7#. In this hypothesis the
bare expression of the elastic free energy is used, which
proportional to the cross-link densityN̄. Here we have
shown that due to cross terms the elastic modulus beco
renormalized by the interactions. Thus we claim that
simple addition theorem is no longer valid.

The next step will be to apply the results from the pres
paper to several experimental situations. In a subsequent
less detailed work@10# we study the effects on swelling an
the thermodynamic behavior. In following works we als
study the free energy functional at smaller length sca
which will provide information on the scattering behavior
the network. This is especially important when deformati
processes on different scales are considered. Extension
entangled systems will also become important within t
context. And, finally, we have to revisit the Debye-Hu¨ckel
approximation. So far, we had assumed that the counter
are freely distributed, an assumption that corresponds to
Debye-Hückel approximation@24#. Of course, correlation ef-
fects will change the picture and these higher order effe
must be the subject of subsequent studies.
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