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Elasticity in strongly interacting soft solids: A polyelectrolyte network
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This paper discusses the elastic behavior of a very long cross-linked polyelectrolyte Rbhire-Hickel
chain, which is weakly charged. Therefore the response of the cross-linked @fetimork on an external
constant forcd acting on the ends of the chain is considered. A self-consistent variational computation of an
effective field theory is employed. It is shown that the modulus of the polyelectrolyte network has two parts:
the first term represents the usual entropy elasticity of connected flexible chains and the second term takes into
account the electrostatic interaction of the monomers. It is proportional to the squared cross-link density and
the Debye-screening parametg31063-651X98)05506-9

PACS numbdss): 36.20-r, 05.20--y, 61.41+e

[. INTRODUCTION of the partition function suggests immediately the appear-
ance of cross terms. We analyze the Flory-Rehner hypothesis
Polyelectrolytes are of fundamental importance in a widen the context of thermodynamics and its applicat[d0],
range of academic sciences to applications. It ranges frorwhere an approximation that neglects fluctuations com-
life sciences such as biology or biochemistry to industrialpletely is shown. In the present paper this is not the central
and practical applications in daily life products. A typical point and we restrict ourselves to compute the elastic re-
example for the latter are superabsorber materials. Thesponse of a polyelectrolyte network including fluctuations on
consist of highly cross-linked polyelectrolyte networks thata variational level.
are strongly interacting elastic materials. In neutral networks, however, the approximations seem to
The theoretical interest in polyelectrolytes reaches back tbe not too bad, because the interactions are relatively short
the early days of polymer scien¢see, e.g.[1]). Neverthe- ranged and weak. Moreover the equilibrium swelling degree
less they belong to the least understood systems in macris then given by the* network. When polyelectrolyte net-
molecular sciencg?], since there are difficulties in applying works are considered, we cannot expect that the Flory ap-
renormalization group theories and scaling ideas in whiclproximation holds. The interactions are long ranged and very
long ranged(i.e., Coulomb forces are present. Only very strong compared to excluded volume interactions. Here a
recently novel types of field theoretic attempts broughtstrong interplay of elastic degrees of freedom and interac-
progresq 3]. tions must be expected. The reason is very simple: the strong
In the present paper we aim for a theory of the elasticityinteractions change the physical nature and the conformation
of polyelectrolyte networks. This is a nontrivial task, since of a charged polymer chain strongly compared to the neutral
most of the classical and modern theories neglect the effecthain. The state at rest, i.e., a network strand without appli-
of interactions on elasticity. In neutral networks the interac-cation of an external force, does not contain as many degrees
tions are mainly given by excluded volume forces. In the dryof conformation as the equivalent neutral chain. Its confor-
network state these can be safely neglected for most casasation ranges, depending on ionization and salt content of
since in dense systems such as polymer melts excluded vake solution, from excluded volume behavior to a rodlike
ume interactions are largelyd,5]. However, if solvent is behavior. Thus a more detailed theory is needed to compute
added to the network and the network starts to swell, probthe elastic modulus of charged and highly interacting gels.
lems arise. Early theories by Flof$] suggested that the Nevertheless the Flory approximation has been employed
elastic part of the free energy and the solvent part, i.e., also for strongly interacting polyelectrolyte gels in bad sol-
Flory-Huggins—type term, can be added. Later on this convent to study the phase diagrdtil]. Moreover, recent sug-
cept was named the Flory-Rehner hypoth¢gisn the con-  gestiong12] have claimed an unchanged modulus for poly-
text of swelling experiments. The network state would beelectrolyte networks. We will see later, however, the reasons
determined by the minimum of the total free energy. Indeedor these statements.
such approximations are used in a wide range of application Most of the classical network theories rely on ‘“single
for rubberlike materials in the swollen stdi@]. The com- chain models.” This is to say that the elasticity of the net-
parison with experiments seems to be reasonable, i.e., in allork can be roughly computed by studying first the elasticity
cases the modulus is found to be proportional to the crossf a single chain. The elastic properties of the entire network
link density, although from a theoretical point of view the are then supposed to be given by the partition function of the
simple addition of the two parts of the free energy must besingle chain raised to the power of the number of chains.
wrong[9]. It must be wrong, because a complete formulationSuch computations hold strongly only for weakly interacting
systems. Again in neutral networks the interactions, i.e., the
excluded volume forces, are weak since they are screened,
*Electronic address: wilder@mpip-mainz.mpg.de but in polyelectrolyte networks these types of assumptions
TElectronic address: vilgis@mpip-mainz.mpg.de do not seem to be reasonable. Another drawback of these
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single chain type theories is that they ignore the effect oi.e., the Debye screening lengkh Indeed little is known
qguenched disorder stemming from the cross links comabout the interplay of elasticiticonformation and strength
pletely. Although some progress for polyelectrolyte networksof the interactions in the theory of network elasticity. The
has been achieved by single chain theofi3], which are aim of the present paper is to learn something about this
based on blob picturgdl5], it is necessary to study a net- interplay. Therefore we apply an external force on the ends
work model including the quenched disorder produced byof the chain. To do so, we employ a variational principle and
the cross linkgsee, e.g.[14] for a review. It has to be kept determine the effective propagator of the chain, which allows
in mind that so far only the limits for large and small screen-statements about the interplay of conformaterd interac-

ing parameters are studied. Large screening paramgters tions on the elasticity. In the following we will neglect the
terms of a Debye-Hetkel approximatioh correspond to a effect of entanglements completely, since we are mainly in-
large salt concentration. This regime is relatively uninterestterested in the contributions of the interactions to elasticity.
ing, since it corresponds to the good solvent regime. Foffhe results given below will then mainly apply for unen-
small screening the chains are significantly stretched, and thteangled networks. To produce simple estimates of entangle-
chains are in the polyelectrolyte regihiE5]. For networks, ment contributions tubelike models can be emploj&di.
however, these two limits alone are not sufficient. In stronglyWe expect, however, that the effects of entanglements will
cross-linked networks the chain pieces between two crossot be very different from those in neutral networks, as long
links can easily be of the same order as the Debyekielu  as their number is given. The main problem would then be to
screening length. Therefore a more elaborated analysis musbmpute the mean number of entanglements by the presence
be carried out. of the electrostatic interactions.

In a previous pap€rl6] we had investigated the coupling  The starting point for the computation of the elastic free
between elasticity and interactions in a single chain. Thisnergy is the Green function of the cross-linked chain with-
model calculation was carried out to show that a strong coueut an external force, similar to our calculations of the single
pling between elastiéconformationgl degrees of freedom polyelectrolyte chaiff16]. The force is treated through the
and electrostatic interactions exists. Of course, unlike as ianalytic continuation of the Fourier-transformed Greens
neutral network systems it is not sufficient to consider thefunction to the complex plane. After having introduced a
elasticity of a single chain and generalize the results to dield theory the problem is mapped on a Gaussian field
corresponding network of a large number of such chains. Itheory with a propagator that formally in the Fourier space
the case of polyelectrolyte networks the chains are stronglgan be written down exactly by making use of the proper
interacting with each other. Therefore any assumption orself-energy. According to the well-known Feynman varia-
weakly interacting chains fails. Nevertheless the computational inequality the sum of the Gaussian free energy and the
tional method used ifil6] has shown to be useful. The re- mean value of the interacting potential has to be minimized
sults presented there ended up in a two regime blob picturevith respect to the proper self-energy, which is our varia-
For small forces the de Genngkb] electrostatic blob model tional parameter. This leads to a nonlinear integral equation
was recovered. In this regime the chain was relatively easy téor the proper self-energy, which can be solved approxi-
deform. For larger forces a change in the elasticity was premately.
dicted. Then the chain entered in a Pincus regime of the The paper is organized as follows. In the next section we
prestretched chain. The results have been confirmed by simpresent the underlying model and introduce the cross links.
lation and by a self-consistent variational principle. Indeedn Sec. Il we formulate a field theory and calculate the
the method developed ii6] is appropriate to the interme- variational equation for the proper self-energy. In Sec. IV
diate regime between strong and weak screening. this variational equation is solved approximately. These sec-

In this paper we extend our considerations concerning th&ons will be written out in more detail, since this is—to our
single polyelectrolyte chaiil6] to a polyelectrolyte net- knowledge—the first time that a strongly interacting network
work. The simplest version of a polymer network was intro-is investigated by this technique. Thus the mathematically
duced by Deam and Edwar{i&7], which consists of a very interested reader might find the main steps of the computa-
(macroscopicallylong cross-linked chain. In our case there tion. The results are presented in Sec. V. The paper ends with
is no difference between a network made of many chains othe discussion of the results.
of one long chain, since we assume to be deep in the solid
phase, i.e., well beyond the vulcanization threshold. As in
the case of a single polyelectrolyte ch&li6] we are inter-
ested in the force-size relationship of the network in a good The starting point for the field theoretic computation is a
solvent. In contrast to the classical theories the effects ohetwork formed out of a macroscopically long chain by the
interactions are now taken into account explicitly. For sim-instantaneous introduction of a sufficiently large number of
plicity we assume a Debye-ldkel potential for the electro- cross links in the liquid phasésee, for example[17,19).
static interaction. It is of the forrv(r)cc1/rexp(—r/\). This  We restrict ourselves to a network that consists of flexible,
might not be the best choice to reproduce recent simulatiomeakly charged strands. Consequently the Edwards model is
data[18], which had shown that the Debye-ekel potential an appropriate tool to describe the netwd®)]. Therefore
is not always a good approximation, but the advantage of thiet us choose as a Hamiltonian for the charged chain in aque-
potential is that its range is controlled by a single parametemus solution

Il. MODEL AND THEORETICAL BACKGROUND
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dr

3 Nio 2 Nig dr i i i
,BHe[f:f]Z—f ”ds ar +Bf “dsf- ar where {,]) denotes that théth and thejth monomer are
212Jo ds 0 ds

close to each other in the liquid phase, which means that they
can form one of thé\. cross links. Consequently the cross-

bzsztmd Ntotd exp{— k|r(s)—r(s")|} link distribution function(S) is simply
+— s s’
2Jo " Jo r(s)—r(s")]
(N Z2(s)
PS=—— 4
wherer(s) represents the chain conformation in three di- f ds'zO(s")

mensions as a function of the contour variatde b

:e,2/477€06rkBT is the Bjerrum lengthg is (kgT) "%, where | e following it appears to be reasonable to assume that
kg is the Boltzmann constant anfl denotes the absolute the 5o chosen distribution function does not depend on the
temperaturel is the Kuhn segment length,is the monomer specific deformation of the network. Note tha¢S) differs
charge in units o, ¢ is the dielectric constant, and the  geperally fromz(©)(S). Since we are interested in deforma-
relative dielectric constanl, stands for the bare number of {5 of the networkZ(S) is the partition function of the
monomers on the chaiff,is the external force ang ™! de- deformed network.

notes the Debye-Hikel screening lengtix. For the intro- To calculate the free energ§ [Eq. (2)] explicitly it
duction of cross links we choose the standard way suggestgd convenient to make use of the so-called replica tficK.

by Deam and EdwardgL7]. We assume for mathematical Thjs, so far, purely mathematical trick relies on the
convenience four functional cross links that join two arbi-jgentity [21]

trary segments(s;) andr(s;) along the chain. Of course, the

value for the free energy then depends on the specific choice

of the pairs of monomers, but on a macroscopic scale only az™
the statistical average on any cross-link configuration is of Inz= om
importance. Nevertheless this requires non-Gibbsian statisti- m=0

cal mechanics in the sense that the cross link positions repefine
resent quenched degrees of freedom.

The basic problem for the determination of the free en-
ergy of the network is the presence of quenched disorder,
which is contained in the permanent cross links. The forma-
tion of a cross link, i.e., the linkage between two arbitrary

segments(s;) andr(s;) represents quenched disorder, Sincéyherem is the replica index. Equatiofs) shows the origin

the segments are joined together for all times and for alh¢ the technical term “replica method.” By the use of the

thermodynamic situations. Of course, the experimental rely,5inematical trickn copies of the system are produced. The

evant free energf depends on the cross-link configuration fee energyF, which is averaged over the disorder of the
and cross-link realizatio§. The actual cross-link configura- rgsslinks readEl7]

tion Sis not known in detail, thus the technical difficulty is
to average the free enerd(S) over all possible cross-link

Fr(NigtsNe) = —kgT In f dsZO(9Z™(S), (5

realizations. To do so, it is generally assumed that the corre- IF m(Niot,Ne)
sponding distributiorP(S) can be determined. F(Niot:Ne) = om : (6)
Let us present the outline of the idea in more detail. To m=0

calculate the free enerdy of the network, we have to take ) ] )
the statistical average over all cross-link configurati@s AS in the previous paper, the free eneifglys calculated by

This represents the fact thetis a self-averaging quantity: maki_ng use of its relation_ to the corresponding.distribution
functions and Green functions of the corresponding propaga-

tor (see[16] for the technical detai)s

F(Ny,N.)=—kgsT | dSP(S)In Z(S). 2
(Niot Ne) B J SP(S)In 2(9) @ IIl. FIELD-THEORETICAL FORMULATION

. ) . , ) In the following we will give an outline of the computa-
Z(9) is the constrained partition function for a network with tion of the network elasticity, i.e., our main aim is to com-
the cross-link configuratiors, N, is the number of cross e the low deformation modulus of the polyelectrolyte net-
links, andP(S) is the cross_-llnk dlst_rlbunon functlon_. SinCe \york. Therefore we start from a concentrated polyelectrolyte
we assume that the cross links are instantaneously introducegd) tion [22], consisting of one macroscopic chain and the
in the liquid phase(S) is yielded by the constrained par- 55nropriate number of counterions to satisfy the condition of
tition function of the liquid phase, which is defined in terms gjgctroneutrality. Then the cross links are introduced instan-
of a path integral as taneously by the process described above. The following
chapter will be very formal, but we think that it is important
to do so, since it turned out that none of the methods em-
Z<°)(S)=J Dr(s)exp(—,BHE)H Sr(s)—r(s)l, 3 ployed for neutral networks can be used in the present con-
(i) text. The main reason for this is that here we do not have the
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option of formulating the problem in terms of one length .qsq finked polyelectrolyte chain in replica space, where
scale, i.e., the mesh size, but must take into account the(r0 ry ) is the replicated 0+ 1)-dimensional
e

range of the interaction. end-to-end vector of the chain a®ithe specific cross-link
For the relevant quantities to compute it is necessary tconf|gurat|on

consider the correlation functlom(r,Ntot,Nc,f,S) of a

~ (Niop) =r Im(Nto) =T'm A A m
G(r,Nm,Nc,f,S>=Jr° "D s)f o) | Dro(stexsi— R T TT dlry(s)

0(0)=0 rm(0)=0
—rp(s)] @)

with p the replica index. The forckis only acting on the ends of the final statesplica index 1 tan) of the chain. Thus the
replicated HamiltoniarH E[f,f] reads

IR 3 & (Nt
Her, fl=— f
BRATA="52 |

2 O (N dr, Ntot Ntot L expl— K|rp(s)—rp(s )|}
+'8p21 Jo deE 2 £ of f rp(s)—rp(s’)] ®

The important observation is that the replicated Hamiltoiarseparates in the different replicas. The coupling of the replicas
comes into play when the average over the distribufi¢8) is performed. If we use the standard distributid] the Green
function must be computed upon the effective Hamiltonian

A A Niot Ntot m
H=HE—ZCJ'0 dsfO dsp[[o 8(rp(8)—rp(s"). (9)

The latter equation shows the difficulty of the problem, i.e., all replicas are coupled. Below we choose a different way,
suggested by Edward47] and Panyukoy19]. We must employ field theoretic metho@ss also done if19]), but the
treatment of the field theory is very different, since the symmetry of the problem is not of the same nature as in the case of
neutral networks.

It is easy to show that the Greens function in the Fourier-transformed replica space depending on a consfardridree
calculated by a zero-force Green function. The force can be reintroduced by the analytic continuation of the Fourier space to
the complex plane, which means in detail:

G(R,Nm,Nc,f,S):JdF exp{—i(k—iBf)r}G(r,Nyi,Ne,f=0,9=G(k@ kW —igf, ... k™ —iBf,Ny, N, f=0,9). (10

Heref is the 3(n+1)-dimensional force vectorO(f, . . . f). This is exactly the same mathematical procedure as we had
already used in the previous calculation concerning the single polyelectrolyte (ska{16]). As a consequence of E(L0)
in the following we neglect the force term in the Hamiltonian and first calculate a zero force correlation function.

The grand canonical correlation functi@(k, uq,z.,f) in replicated Fourier space, whekeis the wave vector in the
3(m+ 1)-dimensional Fourier-transformed replica spacgis the chemical potential of the monomers apds the fugacity
of the cross links, can be calculated by the introduction of de Gennes’ zero-component field(Heeorfpr exampld,19])

G(k,po,2¢,H)=lim f Dy (K) iy (— K)exp{ — BH[ 4]} (12)

n—0

H[zZ] in Eq. (11) is the zero force field theoretical Hamiltonian expressed byhthemponent fieIdZ, which in Fourier space
reads(16,19

R T O e ;e m e A
H[¢(Q)]=HE¢(Q)¢(—Q)+—qzw(qw(—q)}——ﬁ ... (A ¥(az) ¥(az) ¥(aq) 6(0s + a2+ 03+ dg)
q 2 2 8 d1,92,03,04

+E

+05”+05?), (12)

fA ) w(ql)w(qz)f[ 5(q1"+q“>)qu : J(Q3) ¥(0s) H 893 +a{) [V (af+q4) 8(at + g5
3:44

d1.92
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whereV(Y(q) is the Fourier transform of the Debye-tkel - . _ .. . .
potential in thekth replica, is ann-component vector field, G(k, po,2c) = lim J Dipa(k) (= K)expl = BHL 1}

. L . . —0
and [, is an abbreviation for the integral notation " (16)

fd9g/(27)® with d the dimension of the vectay. In Fourier

spaceG(k, uo,Z) can be written exactly as In this notation the well-known Feynman inequality, which

can be taken for the calculation of the approximate proper

- - 12 . -1 self-energyM (k,z.), is given by
G(knoz)=| not gk*+X(kzo)| . (13 )

. F<F+(H-H)4y, (17
where 3 (k,z;) denotes the proper self-energy in replica

space. h
Since we do not know the exact proper self-energyW ere

3(k,z.), we have to calculate it approximately. Therefore
we now consider an approximate correlation function

G(k,;o,z;) With an approximate proper self-energy J Dy - - exp{ — BH}
M(K,z): (- )n=lim N
"o f Dy expf — BH}

(18

IZA . -1
o+ €k2+ M(k,zo)| . (14

Gk, po,20) = is the mean value and the free energy with respect .

The right-hand side of the inequalityl8) has to be mini-

To proceed with a variational principle we define the GaussMized with respect td4. 7 and(H —7¢),, can be written in
ian HamiltonianH by terms of the correlation functio@(k, wq,2.):

. 1( . .~ . oA n -~
BH[lﬂ]:Eflzlﬂ(_k)g_l(k,MOaZc)lﬂ(k)- (15 B7=—§Vfaln[g(q,u.zc)], (19

The correlation functionG(k,uq,z;) can be calculated whereV is the volume of the replica space. As can be shown
within the zero-component field theory of de Genrisse, easily the second term of the right-hand side of inequality

for example[19]): (17) is[21]
n A en mhZ2n’(m+HVgV( (. . 2
ﬁ(H—H>H=—EVfaM(q,zc)Q(q,M,zc))Jr > \ ag(q,u,zc) +abZZn(m+1)V
?(al!M!ZC)E(QZiM!ZC) il 0 0 _é 2 ( ~ A )2
Xfal,az GO L A ) - gt 2y fagm,u,zc) , (20

with V, the volume of a single replica segment avidhe volume of the whole replica space. As we want to determine the

approximate proper self-enerdy (k,z.), this function should be the variational parameter. Consequently the general mini-
mization condition reads

o
m(}_JF(H_HM)—Oa (21

where s/ SM(q,z.) denotes the functional derivative with respecM@q,z,). After inserting Eqs(18) and (20) into Eq. (21)
one obtains
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. 27bZn(m+1)Vg' 1
M(k,z;)= . J e i
K qu+(19/6)g°+M(q,z.)
1 1
+4mwbz? q® (q(0)+ k(O))2+ K2 M+(|2/6)(q(0)’k(1~um))2+ M(q(o),k(l'”m))
2 ! 1
+47b quu) (q(1)+ k(l))2+ p ,u-l—(|2/6)(k(0),q(l),k(2'"m))2+ M(k(o),q(l),k(z'”m))
+ Z°( +2) 1 .
~(n ) i .
2 ap+(1%/6)9%+M(0,zc)
|
where the shorthand notatiéf ™= (k®, ... k(M) isin-  of the cross-linked chain. Therefore we make the same

troduced. This is a nonlinear integral equation m(ayzc), satzfor the proper-self energy as in the case of the single

which in the following has to be solved approximately, sincechain[16]. The only difference is that the proper self-energy
the exact solution is unknown. in this paper is a function depending on the replica-space

wave vectorq:

IV. APPROXIMATE SOLUTION . . .y
FOR THE PROPER SELF-ENERGY M(q)=ap+a;q°+0(q"). (23

In analogy to the calculations on the single chidif] we  To start with letM,(q) be M(g)—M(0). Then M,(q) is
restrict ourselves to small external forces applied on the endgiven by

M (K)=4wbZ2(m+1)

1 1
fq@ (qO+k®)%+ 12 p+ (1216)(gO kT ™)2+ M (g k™)

: (24

1 1
oo (A®)2+ 1t (1216)( )%+ M,(g*,0)

whereu,= u+ag. Since we assume a replica symmetric solution for the proper self-energy, we consider the second derivative

of M (k) with respect tk(®) at vanishing replica-space wave vectkrsvhich yields a result foa;. The details of calculation
are exactly the same as for the single cH4i@l:

_ 2bZ
3127k

k!

N

This result is valid forBq/«x<1 or in terms of the force8f/x<1. For details segl6]. It is important to mention that the
coefficienta, is independent of the fugacity of the cross lirds Consequently to study the characteristics of the network it
is necessary to calculate the constant term of the proper self-eagrdty the following we neglect terms of order where

n is the number of components of the fiefd since we have to take the limit—0:

a; 1+0 (25

A 1 1 1
— 2
MEOZATOEITD) ] 0 (002 o (6@ K ) M () +ZJE:M+(|2/6>6|2+ M(@)’
(26)

Note that the right-hand side of E(6) diverges even in the limin— 0. Since we started with a discrete model, we are
not allowed to consider infinitesimally small length scales, which means that we have to introduce a cutoff in the integrals of
Eq. (26). An appropriate cutoff isc (see[16]). Consequently it is consistent to substitute #mesatz(23) for M(q) in the
integrals of Eq(26), since it is valid for|E1|<K [16]. As we intend to calculatay, all k variables in the integrals of E¢R6)
vanish, which means that only absolute values of dheariables occur. Therefore we introduce spherical coordinates and
neglect terms of ordg®(m?) in the second integral after having transformed to a dimensionless integration variable. Thus we
get the following self-consistent equation fag:
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a :2b22(m+ 1)J'qu 92 1 . 27.(p+ag)32mT12
’ & 0 g%+ «k? utapgt(126)g*+a,q®  23MTYZGRMEL(E (m+1))(1%/6) +a,) ¥R M

6ty (arag ~a2[1+3min(g
% (1%/6+aq)/(u+ag dqq [ i (Q)]' 27)
0 1+q?

Note that the integration variabteis dimensionless. The integrations in Eg87) can be performed and the result is

3bZA(m+1)k
6u+6a,—6k%a;— Kk

12b2(m+1)6(u+ag) k(12+6a,)
ap= 2 22 > > arctal >
m(6u+6ay—6x%a;— k212)\ul?+6ua, +agl’+ 6aga, V6(u+ag)(1°+6a;)

.\ 27.(p+ag)32m+112 /|2/6+a1'1 ams 3 2/6+a,
23(m+1)71_(3/2)(m+1)r(%(m+1))(|2/6+al)(3/2)(m+1) K M+a0 | m minj « M—{-ao

2|2

t 216+ a, 3m7r| +K2(|2/6+al) +3mi[d_I  f1%6+a, ditoal 12/6+a, -
—arctan « itag | 4 +ag 2 ilog| i x avag | ilog| i x i+ ag , (28
where dilogk) is the dilogarithmic function, defined as
: x In(t)
dnog(x)zf dt— (29
1 1-t

Starting from expressiof28) we neglect terms of ordéd(m?). As we consider weakly charged networks we only take into
account terms up to the order of. Terms of higher order in the chargeare neglected. We are interested in the long-ranged
limit of the Debye-Hickel potential. So the next step is to make a series expansion with respect tacsnailding terms of
order 3. Note that the sequence of the series expansions with respect to the monomerzaratdbe inverse Debye-ldkel
screening lengthe is important. For physical reasons it does not make sense to consider first the long ranged limit before
calculating the weakly charged case. The result of this analysis is

bAmt+ 1)k
- utag

2 1 K22 2k212 *z;  (my min(le/\m) 2m 1
—— - —+ ~3 7%

+ +
m 2 12u+ag) 9m(ptag)) #(u+ayl 4 2 3

ag +0(m?,z% k%)
(30)

with y=0.577 2157 Euler’s constant. Neglecting terms of omiéin Eqg. (31) leads to a linear equation i, that can be
solved. The result foa, is

_£<2b22(m+ 1) bZ(m+1) . 2k%1?b2(m+1) ~ k’1?b2(m+1)

o= M T 2 Qu 12u
k[ 2Kk%zcm  Kk%z,ym Kzzcln(KI/\/;)m K%z, 31)
M\ 372 472 2772 6m2)

Since the expansion coefficierdg anda, for the proper forcef acting on the ends of the chain can be calculated:

self-energyM (k) due to the calculation above are known

approximately it is possible to write down the Green function 2 (205 =BO KO af, . k™ =i gt 120 o

formally:
= - (33
(Ko7, = r (32 ju+ag— (126)mB% 2—a,mp2 2’
w+ag+ (12/6)k?+a k?
Here we reintroduced the fordeaccording to Eq(10). The
V. RESULTS monomer chemical potential and the fugacity of cross links

that parametrize the grand canonical partition function in Eq.
From Eg.(32) the grand canonical partition function in (33) should be expressed in terms of the parametggsand
replica space under the influence of an external constar.. According to Panyukov and Rabji9] the expression
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Fm(Ni,Ne) can be calculated by the method of steepest

descent in the thermodynamic limiit,;, N, — o°:

Fm(Ntot:Nc)/kBT: - InE(/-L:Zc)_ Niot +N¢ In Z;.
(34

Consequently the fugacity. of cross links and the chemical
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dIng —o(m,2¢)
tot— —mé,,u - (35
and
d1In Bmoo(p,ze)
= (36)

d1nz,

potentialx of monomers can be obtained by minimizing the in the limit of a vanishing replica inder. It can be shown

right-hand side of Eq(34):

from Egs.(35) and(36) that

N=

whereN is defined as the cross-link densif; /N,y of the
network. Neglecting the charge per monoméhe crosslink
density reads

3z’ 37
8k322012 7+ 36k ub P+ 3k3 2o — 18ul w2 — 9k ub 222 — 33 21272
[
3bZNm?—1202N7T
+ +N
yK?

+3bz2|2 2—8b22I277+O . 42
3z.u%i3 3y (z%). (42)

~ . (38
3z.uk®—18m2us

SinceN is a positive numbee. has to be large enough,
namely,

67721““2
2>
K3

(39

At this point we make a series expansion of E88) with
respect to small neglecting terms of order?, which is
possible, becausg is connected with the cross-link density

ﬁ, that is assumed to be small:

N=pu+0(u?). (40
To calculatez, we make the followingansatzaccording to
inequality (39) with a positivey:

6772,&2

+v,
K3

Z.= (41)

Now we substitute thisnsatzfor z, and the result for the
chemical potentiak into Eq.(37) and calculatg. Therefore

This equation can be solved with respecytd\gain neglect-
ing terms of ordez* and only taking into account the lead-
ing term with respect to a small inverse Debyeekiel
screening lengthx the result is

3m(4—m)bZ?
)

K

+0(z4,k9). (43

Now we can write down the result fa,, which reads

_ 672N2

3m(4—m)bZ?
Z.= + .

3 K2

(44

K

Moreover it can be show[il9] that the conformational free
energy of the network is given by

IINE i 1,2¢)

F(Ntot!NCIf):_kBT am

(45

m=0

If the free energyF is known the force-size relationship is
simply calculated by the derivative &f with respect to the
external forcef:

we again make a series expansion with respect to small

monomer charges neglecting terms of order”.

272N2(9b 2N — 36bNr) Z2

N= V2

272N2 +3bz2|2 2_8hZl%n
y3 y

+

IF(Niot,N¢ . f)

(R)=-—5; (@6

After having inserted the results fay, and v in the force
size relationship, expanded for small chargeseglecting
terms of orderz* and higher, since only weakly charged
networks are stable, and considered only terms of leading
order with respect to smaM the force-size relationship reads
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2 12 x(ksTN?k)/(bZ2), stems purely from the interactions. It is
(Ry=| =—+—=|Bf+0(z",x). (47 not entropy elastic, since the Bjerrum lengtand the Debye
SN« 6N screening parameter depend on tempeggture. The overall
This is again the result for the small deformation regime. Thd€mPerature dependence is given Gy=T"*. Since both
parts have a really distinguished temperature dependence,

result describes a Hookian law for the force extension relafhey can be separated experimentally in a clear way. More-

tion and defines the elastic modulus of the polyelectrolyte : . :
. . . the st ff th -link e
network. Note further that this result is valid for small forces,ov—er € strong difference in the cross-link depende !

i.e., Bf/k<1. Therefore the modulus for the small screeningoc'\I andG, <N?, allows alsoha cliar exp?jrif;nental separation.
o ’ . . It is interesting to note that the two different terms com-
and the low deformation regime of the network reads bine as two springs in series, one entropic Gthe rubber

network and another energetic one, coming from the inter-

b2 12\ 71 actions. If the strength of the springs is very different, natu-
G= '8_ + '8__ (4g ~ rally in such systems always the weaker dominates the main
3N?7k 6N/ elasticity.

It is important to realize that interactions and elasticity
which is the central result of our paper. The modulus deinterplay in a clear way. Our results yield then the conclusion
pends on the density of the cross link and on the Debyghat the Flory assumption, i.e., adding the different parts of
screening parameter. Thus both contributions enter in a sig|astic and interaction parts, is no longer valid in these sys-
nificant way. Most striking is that part of the modulus stem-tems. These approximations are perhaps on a level of the
ming from the interactions, which depends on the cross-linkandom phase approximation, but clearly the field theoretical
densityN squared. variational technique used in the present paper is beyond

perturbative methods used so far in neuf@lL7] and poly-
VI. DISCUSSION electrolyte[12] networks. The Flory-Rehner assumption nor-
) ) ) mally uses for the total free energy of the netwadrk
In the previous sections we analyzed the force size rela— Feiastict Fint, 1-€., the addition of the elastic and the inter-
tionship of a polyelectrolytg network, which was made Of_aaction part of the free enerdip,7]. In this hypothesis the
very long cross linked chain. The method presented, whiclpare expression of the elastic free energy is used, which is

was developed for a single chaii6], is in replica space roportional to the cross-link densiti. Here we have

applicab[e to polyelectrolyt(_a r)etworks. We considered theghown that due to cross terms the elas:tic modulus becomes

tr;gltwork in the long ranged limit of the Debye-&kel poten- renormalized by the interactions. Thus we claim that the
An important result is that for small forces and weakly simple addition the_orem Is no longer valid,

. The next step will be to apply the results from the present
charged networks the response to an gdernal fb_'s_Epro' paper to several experimental situations. In a subsequent and
portional tof. The modulus depends oN?, whereN is the  |ess detailed work10] we study the effects on swelling and
cross-link density, which is a surprising result in contrast tothe thermodynamic behavior. In following works we also
classical considerations on networks, where the modulus isyydy the free energy functional at smaller length scales,
proportional toN [23]. To discuss the result for the modulus which will provide information on the scattering behavior of
in more detail let us discuss it in the form the network. This is especially important when deformation

processes on different scales are considered. Extensions to

entangled systems will also become important within this
12 bz context. And, finally, we have to revisit the Debyédkel
G_WJF m . (49 approximation. So far, we had assumed that the counterions

are freely distributed, an assumption that corresponds to the

The modulus consists of two terms. The first pad,  Debye-Hickel approximatiori24]. Of course, correlation ef-

kgTN, of the modulus is the term corresponding to Classi_l‘ects will change the picture and these higher order effects

cal rubber elasticity. It is proportional to the temperature andnust be the subject of subsequent studies.

to the cross-link density. This corresponds to the usual en-

tropy elasticity of connected flexible chains. The factor 1/6 ACKNOWLEDGMENT
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